
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

Paradox Table Corruption

QI am developing a Paradox
table application in Delphi 1

to run on Windows For Work-
groups (WFWG) 3.11. During
testing we have had various occur-
rences of records being lost, in-
dexes out of date and indexes
corrupted. Why might this be
caused, and what can I do to avoid
it? The network server PC is also
used as a client PC running the .EXE
and is known as network drive L to
all other PCs. We’ve added a SUBST
L: C:\ to that PC’s AUTOEXEC.BAT,
so it’s IDAPI.CFG can also refer to
L:\... for its net directory and
database path. We’re running
WFWG in enhanced mode and so
VSHARE.386 is running, so do I re-
ally need SHARE? We’ve tried run-
ning the .EXE on Windows 95 and
besides the above problem it
seems to run OK. Are there any
other things we should con-
sider/change before running it live
on Windows 95?

ABelow are various recom-
mendations you might find

in various places and comments
about them all, amassed from a
number of Paradox and BDE ex-
perts. Thanks to Steve Axtell of
Borland’s European Technical
Team, Phil Goulson of the UK
Delphi Developer’s Group, John
O’Connell, Mike Orriss and Eryk
Bottomley for their input.

A frequent cause for any of the
above data corruption problems is
the premature termination (power
loss, or PC reset possibly forced
upon the user by a program hang)
of a program accessing a Paradox
table. Lost records will cause the
index to get out of sync with the
data, which will at some stage be
followed by index corruption.

In some cases, bad programming
is the cause of the problem. It is
important to ensure that records
are posted. When you terminate a
program, it is the responsibility of
the developer to Post all un-posted
records before the program is ter-
minated, otherwise you will get a
‘record loss’ problem. This could
be achieved by applying something
like the following statement for all
your table objects in each form’s
OnClose event handler:

if TableObject.State in
 dsEditModes then
 TableObject.Post;

The program development phase
is the time when most tables start
inheriting corruption (caused by
the developer resetting programs
from time to time) which may not
become evident until the system is
deployed. One possible way of
overcoming the problem is to re-
build the indexes periodically. This
can be done with a table restruc-
ture (using the BDE DbiDoRestruc-
ture function, or with the Database
Desktop) and will often resolve in-
dex corruption. It can also be done
using TUtility, which can resolve
data corruption (TUtility comes
with the full version of Paradox and
was included on the disk with Issue
5 of The Delphi Magazine, or look
on the CompuServe BDEVTOOLS
forum).

An alternative, and perhaps
more foolproof, way of fixing bro-
ken indexes would be to write a
routine which physically erases
the indexes (with DeleteFile) and
recreates the indexes from scratch
with the BDE DbiRegenIndexes call
(which relies on the table being
opened exclusively). If your tables
use referential integrity, then
deleting the indexes may cause a

problem due to a special checksum
in the table header. In these cases
you will need to delete the indexes
and the .VAL file and use DbiDoRe-
structure to regenerate all tables
that are involved in the referential
integrity relationship.

In the BDE Configuration applica-
tion on all PCs that will run the
program, set Local Share to True on
the System page. This ensures that
lock files are written to the local
hard disk, thereby ensuring that
applications on other machines
will be able to find the lock files.
This should only be necessary for
the machine where the data re-
sides, however the general opinion
is that it should always be turned
on, provided you have file sharing
functionality loaded with either
SHARE or VSHARE. On peer to peer
networks, the default setting of
Local Share is a common cause of
data loss.

When False, Local Share in-
structs the BDE to assume that all
access to tables on ‘local drives’ (a
peer to peer LAN counts as ‘local’)
will occur via the same instance of
the BDE in memory, it therefore
fails in a number of situations
including:
➣ Peer to peer LANs;
➣ Two applications running in dif-

ferent memory spaces under
Windows NT (and maybe OS/2);

➣ Running a 16-bit BDE app and a
32-bit BDE app on the same
machine in Windows 95 or NT.

SUBST will disable 32-bit file access
and may therefore slow the ma-
chine down. If 32-bit file access is
disabled, VSHARE won’t be loaded.
Some would say that SUBST isn’t
very safe especially when used
with Windows 95 and is probably
provided by Microsoft for compati-
bility with old DOS applications.
Apparently, there are little corners

52 The Delphi Magazine Issue 17

where Paradox does not function
correctly and some people don’t
trust the command to work for all
flavours of Wintel operating
systems.

As an aside, it has been observed
that the latest 16 bit BDE (2.52,
which ships with Paradox 7 for
Windows 3.1x) has problems with
Auto Refresh not occurring in
Paradox 7 for Windows 3.1x on the
server when the server is a Win-
dows 95 machine. This may have
ramifications for Delphi users.

Recent revisions of the BDE
allow different Sessions/Users to
reference the PDOXUSRS.NET file
using different drive letters so long
as the remainder of the path is
identical. Since the server has
shared its root directory there is
therefore no need to use SUBST and
put up with the associated draw-
backs: simply set the server ma-
chine’s IDAPI.CFG Net Dir setting
(on the Drivers page in the PARADOX
driver settings) to C:\MYDIR and
the workstations’ Net Dir to
L:\MYDIR. You can do this in code
by assigning a value to Session.-
NetFileDir if you want to avoid
editing IDAPI.CFG.

Note that using the root direc-
tory for the NET file can confuse
certain BDE revisions. It is advis-
able to avoid this as a matter of
policy even though the current re-
vision seems happy with it. Also, if
the user of the server does not
want to share the entire C drive, it
might be better to create a small
partition for the Net Dir location.

If Local Share is True then the
BDE will detect an incorrect Net-
FileDir and refuse to access the
tables. If an incorrect assignment
here is causing corruption then
Local Share is still the real culprit.

On the Aliases page of the BDE
Configuration application on all
PCs in that will run the program,
ensure the alias’s Path points to the
same network data directory.

Ensure that all users have their
own private directory, preferably
local. This is set with the Session
object’s PrivateDir property. Note
that the online help specifies that if
there will be multiple instances of
the program running simultane-
ously on any one machine you

should make sure each instance is
given a unique path to avoid inter-
ference between temporary files
from the different instances.

Call DbiSaveChanges after each
table post (done simplest by put-
ting the call in the table’s AfterPost
event handler). This should be un-
necessary if the local share option
has been set properly. When the
BDE knows that the Paradox table
is on a network, each record is
saved to disk automatically. There-
fore, DbiSaveChanges may only be
necessary for saving local tables.
There are two cases where a call to
DbiSaveChanges can be a definite life
saver: when you empty a table and
when you restructure/pack a table
(using DbiDoRestructure); this is be-
cause the actual table file is deleted
and recreated but isn’t necessarily
committed to disk.

Check your other software/hard-
ware caching as delayed writes are
not good news on a network.

Instead of repeated calls to DbiS-
aveChanges, call DbiUseIdleTime in
the Application’s OnIdle event han-
dler (also set the event handler’s
Done parameter to True). A call to
DbiUseIdletime writes one dirty
buffer to disk. Putting it in the
OnIdle event means buffers will be
written whenever your program is
waiting for user input. Avoid using
both DbiSaveChanges and Dbi-
UseIdletime as they both do the
same thing and so you’ll be causing
excessive function calls. This
routine is becoming very popular
as a general alternative to DbiS-
aveChanges, as it requires much less
coding to use.

Have SHARE loaded with pa-
rameters of /F:4096 /L:40 as rec-
ommended by Borland. This
advice is generally for Windows
3.10 users only. VSHARE from Win-
dows for Workgroups supersedes
SHARE: it’s much better, although
there is a caveat. Apparently
VSHARE is a 32-bit driver which
won’t work with 16-bit disk control-
lers/drives which are present on
non-local bus IDE PCs. In those cir-
cumstances, excluding SHARE
from AUTOEXEC.BAT, and ena-
bling VSHARE from Control Panel
causes an error from IDAPI indicat-
ing SHARE isn’t loaded.

Write a message handler for
wm_EndSession in your main form
class. Delphi 1 doesn’t automat-
ically handle this message which is
sent when Windows is shut down
by the user (although Delphi 2
does). Consequently, if a Delphi
app is running when Windows is
terminated, it won’t be closed
properly, and so BDE buffers may
remain unwritten. It would be good
practice to call Halt on receipt of a
wm_EndSession message handler.
Halt is not normally an advisable
way to close a program, usually we
use Application.Terminate. How-
ever that operates by posting (as
opposed to sending) a wm_Quit mes-
sage and so won’t get around to
doing what it needs to before Win-
dows is gone. Halt causes exit pro-
cedures to be called, including the
one in the DB unit which frees the
Session object, thereby closing
down the BDE in a proper fashion.

Listing 1 shows part of a form
unit which takes up some of these
suggestions. This code is from the
project LOSS.DPR on the disk.

DLL Debugging Issues

QHow do I debug a DLL that I
write? How do I debug a

Delphi-written DLL being used by
another program (eg a Visual Basic
app)? How do I debug the design-
time behaviour of the components
(or experts) I write? [These ques-
tions all came in separately, but can
all be answered together. Editor]

ADelphi’s integrated debug-
ger cannot debug DLLs (it

looks like Delphi 3’s will be able to)
so you have to resort to other
means. You need to get hold of an
appropriate version of Turbo
Debugger for Windows (TDW) that
understands the debugging infor-
mation generated by Delphi. When
compiling the DLL don’t forget to
go to the Linker page of the Project
Options dialog and turn on the In-
clude TDW debug info switch. This
will allow TDW to operate sensibly.

Delphi 1 programs require a 16-
bit version of TDW and Delphi 2
apps need the 32-bit version
(called TD32). If you have Borland
C++ 5 then you’ll have these

54 The Delphi Magazine Issue 17

versions. Similarly, if you purchase
a copy of Turbo Assembler 5
(rather cheaper than Borland C++)
then you also get the appropriate
versions. So how does it work? It
will take you a while to get used to
Turbo Debugger, but you should
persevere: some of the keystrokes
are different, and it works in text
mode, rather than using the
standard Windows API.

When using Delphi’s integrated
debugger to debug a program that
calls a routine in a DLL, if you try to
trace into the DLL routine (F7) you
get the same effect as if you’d
pressed F8 (step over): you skip
straight past it. However when you
do the same in Turbo Debugger,
provided the source for the DLL is
available, you step into the source
code for the DLL routine so seam-
lessly that you wouldn’t realise it
was in a separate module.

So now onto the question about
debugging a DLL used by a non-

Delphi program (eg one written in
C++, VB, Paradox, Visual dBASE).
The same question applies to
debugging a DLL that is used by a
Delphi program that was compiled
with no debugging information.
The question about debugging
design-time component behaviour
boils down to the same thing as
well, since your component source
is compiled into the 32-bit
CMPLIB32.DCL or 16-bit COMPLIB.DCL

(which are DLLs with different ex-
tensions). To ensure TDW debug
information is generated for the
component library, go to the
Library page of the Options|Envi-
ronment dialog (Delphi 1) or
Tools|Options dialog (Delphi 2) and
choose Compile with debug info.

The ten steps go like this:
1. Ensure debugging information

is included in the DLL using either
the appropriate linker option, or
the option on the Library page for
the component library.

2. Load Turbo Debugger
(TDW.EXE or TD32.EXE), from
Windows Explorer or Program
Manager.

3. Remove the opening dialog
box by pressing OK.

4. Choose File|Open..., press
the Browse button, locate the
program that uses the DLL and
press OK. For debugging compo-
nents this will be DELPHI.EXE or
DELPHI32.EXE as appropriate.

5. Turbo Debugger will tell you
the program has no symbol table:
that says there is no debugging
information in the EXE. Press OK.

6. Choose View|Module... (F3)
and enter the name of your DLL (eg
CMPLIB32.DCL), but no path, into the
DLL name edit box and press the
Add DLL button. It will be added into
the DLLs and programs list with a
double exclamation mark symbol if
the DLL is not yet in memory.

7. Ensure Load Symbols and Debug
startup are both set to Yes and
press Cancel to shut the dialog.

8. Continue running the program
with Run|Run (F9) and when the DLL
gets loaded, Turbo Debugger pops
back up.

9. Now you can choose View
Module... (F3) and see all the
source files from the DLL that have
debug information available.

10. Choose the appropriate file
and place breakpoints as required
(with Breakpoints|Toggle or F2) or
add watches (Data|Add watch, or
F7) and continue running (F9).

Annoying Workgroup Menu

QWhen I installed Delphi 2 I
got the Workgroup menu

added. I don’t currently use the
version control software but the
menu is very annoying. When the
mouse brushes over it, there is a
large delay before the menu first
drops down, presumably caused
by the version control link DLL and
version control software being
loaded. What do I need to do to
remove the menu?

ALoad up the registry editor
(REGEDIT.EXE) and navigate

down the following path:
 HKEY_CURRENT_USER\Software\
 Borland\Delphi\2.0

 TForm1 = class(TForm)
 ...
 public
 procedure DoIdle(Sender: TObject; var Done: Boolean);
 {$ifdef VER80}
 procedure WMEndSession(var Msg: TWMEndSession);
 message wm_EndSession;
 {$endif}
 end;
...
uses DbiProcs;
...

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnIdle := DoIdle;
end;

procedure TForm1.DoIdle(Sender: TObject; var Done: Boolean);
begin
 { Each idle period, write a dirty buffer to disk }
 DbiUseIdleTime;
 Done := True;
end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
var Loop: Integer;
begin
 {Generic way of ensuring all table changes are saved when form is closed}
 for Loop := 0 to ComponentCount - 1 do
 if Components[Loop] is TDataSet then
 with TDataSet(Components[Loop]) do
 if State in dsEditModes then
 Post;
end;

{$ifdef VER80}
procedure TForm1.WMEndSession(var Msg: TWMEndSession);
begin
 { If session is ending, call Halt to get exit routines executed. The DB
 unit’s exit routine frees the Session object, which will unload the
 BDE, flushing any unsaved changes to disk }
 if Msg.EndSession then
 Halt;
end;
{$endif}

➤ Listing 1

January 1997 The Delphi Magazine 55

Select the Version Control key and
note down the current value of
VCSManager (you’ll need this to re-
store things if you need the menu
back later). By default VCSManager
points to STDVCS32.DLL in Delphi
2’s BIN directory. Having selected
the Version Control key, delete it
with the Delete key. Next time
Delphi 2 loads, the menu will be
gone.

Making A Unique Key Value

QThere seems to be no well
defined way to make a

unique key field value for a record:
there is no obvious way to define a
unique Longint (say) serial number
for a new record (RecordCount is
useless as it only looks at the cur-
rent size of the table and with dele-
tions over time this is not unique).
Once a new record is being built
(say, because the user has hit the +
on a DBNavigator) there is no
obvious way to test a new key for
uniqueness by using eg LookUp() in
a BeforePost event, since the act of
calling LookUp() on the table at-
tempts a post on the new record
and one recurses indefinitely until
stack overflow!

AThere would be some who
would say that ensuring a

unique key value is unique when
you make a new record doesn’t re-
ally work as well as you might want.
When you come to post the record,
someone may have already posted
a record with the same value
(which they would have found to
be unique as your record had not
been posted at that time). This
would give a key violation!
But anyway, you’ve asked the ques-
tion about calculating a unique
value, so let’s use your scenario to
look at the question. The key to this
is to use another TTable object to
do the searching. Since you men-
tioned the dataset Lookup method,
you must be using Delphi 2 (it’s
new in that version). This solution
uses that method and so is re-
stricted to Delphi 2.

Listing 2 shows a function called
Unique that takes a TTable object, a
field name and a potential value
that needs checking for unique-

ness. If that number is not unique
it finds the nearest higher value
that actually is unique and returns
it. Also in the listing is in an
OnNewRecord event handler for a
table that calls Unique. It passes the
current record count as a possible
unique value and then Unique re-
turns a definitely unique value that
is greater than or equal to it. This
value is placed in an appropriate
field object. The sample project
UNIQUE.DPR implements these
routines.

The Millennium Bug

QHow can I get Delphi to dis-
play database dates with a

four digit year (instead of two), to
avoid the millennium bug?

AThere are several ways to
achieve this. If you don’t

have many date fields, then you
can set the DisplayFormat proper-
ties of the field objects to an appro-
priate string like dd/mm/yyy or
mm/dd/yyy. Alternatively you can

change things on a more global
basis. The default date repre-
sentation comes from the short
date setting in the Control Panel
international or regional settings.

You can either change the
setting in Control Panel, or to be
less destructive to all Windows
applications you can make a
change in your Delphi code. When
your application starts, the initiali-
sation code of the SysUtils unit
reads the Control Panel setting into
the ShortDateFormat variable in a
procedure called GetFormatSet-
tings. In your main form’s OnCreate
event handler, or in one of your
form units’ initialisation sections
you can turn the two digit year
code (yy) into a four digit code (yyy
or yyyy).

Bearing in mind the variety of
possible short date formats, we
need some algorithm to do the
replacement of the year section,
which could be in any part of the
string. Listing 3 shows a potential
form OnCreate handler that seems
to do the job.

procedure TForm1.FormCreate(Sender: TObject);
var Index: Integer;
const
 TwoDigitYear = ’yy’;
 FourDigitYear = TwoDigitYear + ’y’;
begin
 if Pos(FourDigitYear, ShortDateFormat) = 0 then begin
 Index := Pos(TwoDigitYear, ShortDateFormat);
 if Index <> 0 then
 { Insert an extra letter ’y’ }
 Insert(’y’, ShortDateFormat, Index)
 end
end;

➤ Listing 3

function Unique(Tbl: TTable; Fld: String; Value: Integer): Integer;
begin
 with TTable.Create(Application) do
 try
 DatabaseName := Tbl.DatabaseName;
 TableName := Tbl.TableName;
 Open;
 repeat
 Inc(Value)
 until Lookup(Fld, Value, Fld) = Null;
 Result := Value
 finally
 Free
 end
end;

procedure TForm1.Table1NewRecord(DataSet: TDataSet);
begin
 { Ensuring uniqueness on a new record doesn’t say much for its state when
 posted. Someone else may have already posted that supposedly unique
 value }
 Table1[’CustNo’] := Unique(Table1, ’CustNo’, Table1.RecordCount);
end;

➤ Listing 2

56 The Delphi Magazine Issue 17

	Paradox Table Corruption
	DLL Debugging Issues
	Annoying Workgroup Menu
	Making A Unique Key Value
	The Millennium Bug

